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Exact Solutions to a Coupled Nonlinear Equation 
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A coupled nonlinear partial differential equation is studied which represents a 
model for wave propagation in a one-dimensional nonlinear lattice in the absence 
of one of the variables. The coupled equation is solved exactly by applying the 
criteria of the Weierstrass elliptic function. 

Recently considerable attention has been focused on the study of 
coupled nonlinear partial differential equations (Guha-Roy et al., 1986; 
Guha-Roy,  1987a,b; Krishnan, 1982, 1986) that can be solved exactly. Here 
we study the following coupled nonlinear equation (Guha-Roy,  1987b): 

qb, + ~ 2 ~  x + f l~x + A cbqbx + 7qbx~ = 0 ( la)  

q~, + 6(qb~)~ + e ~  = O ( lb)  

where the subscripts refer to partial differentiations with respect to the 
indicated variables, and a,/3,  A, y, 6, and e are arbitrary parameters. It is 
interesting to point out that for �9 = 0 equation (1) represents a model for 
wave propagat ion in a one-dimensional nonlinear lattice. Furthermore, as 
is outlined in Wadati (1975), for �9 = 0, equation (1) shares properties with 
the KdV equation ane the modified KdV equation, under certain conditions. 

Our main concern in the present paper  is to seek exact solutions of  
(1) by applying the criteria of  the Weierstrass elliptic function. The solitary 
wave solution will be obtained as a simple limit of a stationary periodic 
solution. 

In a recent paper  (Guha-Roy etaL,  1986) we have shown, by introducing 
an analogue of the stream function, that if one of the solutions of  some 
coupled nonlinear equations is of  the traveling wave type, then the other 
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must also exhibit the same form. Keeping this in mind, we choose a new 
variable s (= x - c t )  such that 

qb--= qb(s), ~--= ~(s )  (2) 

where c is the constant speed of propagation. 
Using (2), we integrate (1) once to obtain 

~1 _ C(i~ d_ tl~ xit3 .q_ __fl t~3 d_ 2 (i)2 d_ ,yt~,, = k I (3a) 
3 3 

--  C~I r -I- SqUat r -t- e ~tr2 = k2 (3b) 
2 

In equation (3a), the primes denote differentiation with respect to s; k~ and 
k2 are constants of integration. It is to be noted here that qb would be regular 
everywhere provided k2 vanishes. As a result, equation (3b) yields 

* = 2  ( c - - ~ * /  (4) 
\ e  e I 

Inserting (4), one can eliminate �9 from (3a) to get 

y ~ , , _  ~e ( 8a~3 3 _ fle3)d93 +_~e 3 (16ac62 + Ae3)~ 2 

--~33 ( 8t~c2r ''1- 3 8OtC3 __ ce ) c ~ q - ~ e  3 - k, (5) 

Now, from the vanishing boundary conditions 

~ ,  qb', qb"~ 0 as Isl-,  
kl may be determined as 

k 1 = 8ac3/3e 3 

Thus, equation (5) may be expressed as 

= 'lTiq-~--~T~2'..t~ "1-~'/~3t1~ (6) 

where 

7"11 = (8OtC2t~ d- Ce3)/TE 3 

~72 = (16ac82 + A E 3 ) / T E  3 

•3 = ( 80~(~3 - ~E3)/") rE3 

From equation (6), it is obvious that the solutions depend effectively on 
the values of r/l, B2, and ~3. In the following we adopt the methodology 
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of  Kano  and  N a k a y a m a  (1981) to work out the solutions o f  (6). As such, 
we seek (Krishnan,  1982, 1986) a solution o f  qb in the form 

Cb(s) = a ( p ( s ) /  q(s)  ) (7) 

where p(s )  is the Weierstrass elliptic function,  q(s)  = 1 + bp(s) ,  and a and 
b are arbitrary parameters.  Consequent ly ,  p(s )  satisfies the condi t ion 

(p,)2 = 4p3 _ 2g2p - g3 (8) 

In  (8), g2 and g3 are both  real constants such that  8g 3 > 27g32. 
We next substitute equat ion (7) into (6) and then equate the coefficients 

o f  the powers  o f  p on both  sides. This yields the following relations: 

r~a b 2 - �89 + �89 a2 = - 2 b  (9a) 

2r/lb -�89 = 6 (9b) 

711 ~- 3bg2 (9c) 

0 = 2bg3 - gz (9d) 

Now,  f rom equat ions (9a) and (9b) we can easily determine a and b as 

[ 12r/2 + 48(r/2z- 5 rh r/3) a/z ] b =_r/2a + 12 
a - 2 , (10) 

3 r / 2 -  16yh r/3 4rh 

Moreover ,  gz and g3 can be evaluated f rom (9c) and (9d). We find 

g2 = rh/3b, g3 = g2/2b (11) 

Therefore,  we can write the exact per iodic  solution as 

ap(s + O; g2, g3) 
qb(s) - (12) 

1 + bp(s+ 0; g2, g3) 

where 0 is a constant  o f  integrat ion o f  (8) and a, b, g2, and g3 are expressed, 
respectively, by (10) and (11). As such, the exact bounded  periodic solution 
can be obta ined as 

e 3 + ( e , -  e3) s n 2 [ ( e l  -- e3) l /2s  + 0o] 

�9 (s) = a 1 + b{e3 + ( e z -  e3) s n 2 [ ( e l -  e3)l/2s + 00]} (13) 

where el, e2, and e 3 are real roots of  4y  3 -- 2g2y - g3 = 0 s u c h  that  e 3 < e2 < el 
and sn is the Jacobian  elliptic sine function;  00 is an arbitrary real parameter .  

Not ing  that  the modulus  o f  sn is given by m = (e2-.e3)/(e~ - e3), one 
can easily go to the solitary wave limit. Since the solitary wave is a wave 
when the per iod is infinite, we have m = 1. Thus e~ = e2. As a rc :ul t  

el - (e~ - e3) sech2[(el - e3)l/2s + 00] 
C b ( s ) = a l + b { e l _ ( e l _ e 3 ) s e c h 2 [ ( e l _ e 3 ) l / 2 s + O 0 ] }  (14) 

which represents the solitary wave solution o f  (1). 
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In summary,  we have obtained the exact solution of the coupled 
nonlinear partial differential equations ( la)  and (lb).  We have also found 
that under certain conditions this solution gives rise to the solitary wave 
solution. The knowledge of  such solutions may have crucial significance in 
understanding the relevant features of  nonlinear systems. 
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